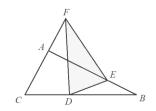

第十一屆"華羅庚金杯"少年數學邀請賽澳門區決賽

決賽試題(初中一年級組)

(時間: 2015年4月11日下午3:00~4:30)


	參賽編號:	_ 比賽課室:	證件號碼:	
		請勿於賽卷上填寫姓名或	學校等有關字眼	
	一、填空題(每小題 10	分, 共80分)		
l .	計算: 2048 $\times \left(1\frac{1}{2} + 2\frac{1}{4} + 3\frac{1}{8}\right)$	$+ \cdots + 10 \frac{1}{1024} = $	_·	
2.	一堆彩球只有紅、黃兩色. 先數出的 50 個球中有 49 個紅球, 此後, 每數出 8 個球中都有 7 個紅			
	球,恰好數完.已數出的球中	中紅球不少於 90%. 這堆	影球最多有個.	
3.	正整數 a,b,c,d 滿足 $\frac{2}{3} < \frac{2}{3}$	$\frac{a}{b} < \frac{c}{d} < \frac{3}{4}, \stackrel{\sim}{\boxplus} a + b + c$	+ d 最小時, c =,	d =
1.	圓形跑道上等距插著 2015 面	面旗子,甲與乙同時同向	可從某面旗子的位置出發,當	當甲與乙再次同時
	回到出發點時,甲跑了23圈	周, 乙跑了 13 圈. 不算起	是始點旗子位置,則中間有_	
	在旗子位置追上乙.			
5.	現有 2015 張卡片, 每張上寫	3有數字+1或-1. 如果每	 事次指著其中的三張卡片問	:"這三張卡片
	所寫的數位的乘積是多少?	"並得到正確回答.那原	麼,至少問次才能	確定這 2015 張卡
	片所寫的數位的乘積.			
5.	設 a,b,c 為1到9中的三個不	一 「同整數,則 	最大值是,最小值	是
	是個三位數)			
7.	如右圖,正六邊形中兩個等類	邊三角形的面積都為30	平方釐米, 那麼正六邊形的	酒積

- - 二、解答下列各題(每小題 10 分, 共 40 分, 要求寫出簡要過程)
- **9.** 算式1×3×5×···×2013 + 2×4×6×···×2014 的值被2015除的餘數為多少?
- 10. (1) 右圖共含有幾個四邊形? (2) 在右圖的每個頂點處標上 1 或-1, 共有 4 個 1 和 4 個-1, 將每個四邊形 4 個頂點處的數相乘, 再將所得的所有的積相加, 問:至多有多少個不同的和?

- 12. 加工十個同樣的木制玩具, 需用 260 毫米和 370 毫米長的標準木方分別為 30 根和 40 根. 倉庫裡有長度分別為 900 毫米、745 毫米、1385 毫米的三種標準木方, 用這三種標準木方鋸出所需長度的木方, 每鋸一次要損耗 5 毫米長木方. 問是否可以用三種木方, 每種木方選一些, 恰好鋸出十個玩具所需的木方?如果可以, 要求鋸的次數最少, 那麼三種木方各選多少根?(說明:一根木方被鋸一次要得到兩個長度大於 0 的木方, 即不能從一端鋸.)

- 三、解答下列各題(每小題15分,共30分,要求寫出詳細過程)
- **13.** 如圖, $\triangle ABC$ 中, $D \neq BC$ 上一點且 CD : DB = 2 : 3, $E \neq AB$ 上一點且 AE : EB = 2 : 1, $F \neq CA$ 的延長線上一點且 CA : AF = 4 : 3. 若 $\triangle DFE$ 的面積為 1209, 求 $\triangle ABC$ 的面積.

14. 求使得 $n^2 + 2^n$ 為完全平方數的自然數n.